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NASA TT F-9871

EXPERIMENTAL AND THEORETICAL RESULTS ON HEAT TRANSFER
AT THE LEADING EDGE OF HYPERSONIC SWEPTBACK WINGS

J.Valensi, R.Michel, and D.Guffroy
4364

This paper is devoted to a survey of the theoretical and ex~
perimental results on laminar heat transfer at the leading
edge of hypersonic wings. The results of pressure and trans-
fer heat rate measurements at the stagnation line of leading
edges at Mach numbers 4, 7, and 10 are presented. Two tech-
niques of theoretical analysis are described and illustrated;
they are based on the solution of the local and global
boundary layer equations respectively. The theoretical and
experimental results are in satisfactory agreement in the
case of large sweep angle but the effect of a strong entropy
gradient due to the curvature of the shock wave is evident in

the case of medium sweep at high speed. /ﬁl&LJA£¥)

1. Introduction

The study of heat transfer in the region of the stagnation point of space
vehicles is quite advanced, at least for the case of a laminar boundary layer;
however, a second less known critical region, preéent in a hypersonic glider, is
the leading edge of the wing of which such a glider consists, in which case the
prediction of heat transfer to the wall necessitates an analysis of the develop~
ment of the boundary layer in a three-dimensional flow.

Presently available theoretical results concern mainly the case of an in-

* Numbers in the margin indicate pagination in the original foreign text.
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finite sweptback cylinder. For this type of body, similitude solutions, as de-
rived specifically by Reshotko and Beckwith (Bibl.l), yield simple formulas for
the heat transfer along the stagnation line of the leading edge.

However, the use of formulas of the infinite cylinder, in estimating the
heat flux at the leading edge of a real wing, is disputable already at short
distances from the nose since the so-called origin effect might considerably
modify the results. In addition, these formulas yield no data on the evolution
of the heat transfer at the point of attachment of wing tip to leading edge,
where both pressure and Mach number may undergo variations which, to a nonnegli-
gible extent, will influence the development of the boundary layer and its prin-
cipal characteristics.

To find some answer to these various questions, a study on the theoretical
and experimental aspects of the problem has been started jointly by the Insti-
tute of Fluid Mechanics of Marseille and the National Aerospace Research and
Development Administration. The present paper resumes and completes a partial
analysis published previously (Bibl.2) and gives theoretical and experimental
considerations discussed in two papers published in the Comptes Rendus of the
Academy of Sciences (Bibl.3, 6).

In the experimental sector, the program included measuring the pressure
distributions and the heat transfer to the wall along the leading edge of two
hypersonic wing models. The overall results are reported for different angles
of sweepback of the leading edge, at Mach numbers of 4, 7, and 10.

In the theoretical field, two different calculation methods were de- /890
fined and utilized. One is based on the solution of local equations of the
boundary layer and on solutions of local similitude; the other method uses a

solution of the summary equation of energy. Both methods make use of the prin-




ciple of superposition in the boundary layer of the longitudinal flow on the

transverse flow.

2. Experimental Study

2.1 Test Conditions

The experimental study covered three wing models, representing a schematic
hypersonic glider provided with a spherical-sector tip, attached to a leading
edge of the same radius with two plane faces. The experimental program sched-
uled pressure measurements and determinations of the heat transfer to the wall
along the stagnation line. The models were placed at zero incidence, while the

angle of sweepback of the leading edge was varied with the sideslip.

2.1.1 Tegts at Mach Numbers 4 and 7

The model A had the following geometric characteristics: sweepback, 80°;
radius of tip and leading edge, 7 mm (M, = 4) or 10 mm (M_ = 7); overall length,
160 m (M, = 4) or 265 mm (M_ = 7).

At Mach 4, the tests were made in the supersonic wind tunnel of the IMFM
(Institute of Fluid Mechanics, Marseille). In this case, the base temperature
is close to the wall temperature (~ 290°K). The test Mach number was Mo = 3.95.
The base temperature was regulated by means of a reheater, so as to obtain de-
viations of a few degrees relative to the temperature of the mockup (ambient
temperature).

The measuring principle for the heat transfer consisted in recording, as a
function of time, the rise in temperature of red copper pellets of a thickness
of 0.4 mm, embedded in the brass mockup but isolated from the latter. The tem-

perature fluctuation as a function of time was read at the initial instant of




the gust, while the wall temperature was still uniform. Since the mockup was
solid, its temperature remained practically constant during the entire gust.
After having made tests at various values of the ratio T,/Ty, a practically
linear curve can be plotted, representing g/Ty as a function of T,/Ty. The
slope of the tangent to this curve, for Ty = T,, represents the density coeffi-
cient of the convective heat flux: h = g/(T, - T¢). The ratio T;/T; can be de-
termined along this tangent, for g = 0. The angles of sweepback selected were
60°, 65°, 70°, 75°, 80°, 85°, 90°.

At Mach 7, the tests were made in the hypersonic wind tunnel of the IMFM
by R.Guillaume. The base temperature was about 600°K and the wall temperature
slightly below 300°K. The test Mach number was 7.03.

The principle of determining the heat transfer is the same as at a Mach
number of 4. However, it is impossible to sufficiently vary the ratio T,/T; so
as to obtain a satisfactory accuracy in determining T; and h. The thickness of
the pellets was 3 mm in this case, while the angles of sweepback were 65°, 70°,

75°, 80°.,

2.1.2 Tests at Mach Number 10 /891

The model B with a sweepback of 75° consisted of a spherical tip and a
leading edge with a radius of 8 mm, at an overall length of 107 mm.

This model was tested in the hypersonic R 3 wind tunnel of the ONERA (Na-
tional Aerospace Research and Development Administration) at Chalais-Meudon, at
a test Mach number of M, = 9.85. The base temperature and the wall temperature
had a mean value of T; = 1180°K and T, = 290°K, respectively.

The measuring principle for the heat transfer consisted in recording the

temperature rise of the wall itself, as a function of time, and in defining the
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heat transfer from the derivative dT/dt. The model consisted of an iron skin
of a thickness of 1 mm, whose temperature was measured by means of thermo-
couples. The temperature fluctuation was read at the initial instant of the
gust; operation with a bypass ensured, from this initial instant, the necessary
base temperature. Thus, the measured heat fluxes refer to a uniform wall tem-

perature, equal to the ambient temperature.

2.2 Results

2.2.1 Pressure Distribution at the Wall

The experimental investigation of the pressure was made mainly along the
cylindrical portion of the leading edge, while the pressures along the spherical
portion were theoretically determined. We used a Newtonian pressure law, ex-
tended by a Meyer-Prandtl expansion.

The measured pressure distributions, along the stagnation line of the lead-
ing edge, are plotted in Fig.l.

At Mach numbers of 4 and 7, the length of the mockups was sufficient for
having the pressure shift rearward toward a rather constant value, close to
that obtained for an infinite sweptback cylinder.

The development of the pressure at Mach 4, from the distribution observed
on the spherical portion, proceeds in a highly regular manner tending rapidly
toward a uniform asymptotic value. This is not the same for a Mach number of 7
at which a much more irregular development can be observed at the attachment
point, where the pressure passes through a minimum which tends to shift down-
stream with increasing sweepback.

This latter phenomenon is even more pronounced at Mach 10. The length of

the mockup apparently was insufficient to reach the asymptotic value of the




pressure corresponding to the infinite cylinder.

2.2.2 Form of the Shock Wave and Entropy layer

To extend the data obtained in pressure measurements, the experimental pro-
gram included an optical study of the shape of the shock wave, for each indivi-
dual case. A schlieren method was used for accurately determining the trace of
the shock wave in the plane of symmetry. A highly sensitive strioscopic visual-
ization was used for obtaining data on the volume flow rate between the leading
edge and the shock wave.

For illustration, the result is shown in Fig.2 where the development of /892
the shape of the shock with the sweepback angle is plotted at a Mach number of
Me= 7. Two modes of representation were used.

In the first version (upper diagram), the form of the shock wave relative
to a fixed angle of attack is given. It is obvious that, at all sweepbacks,
the trace of the shock wave, after first coinciding with that of a sphere,
starts approaching the leading edge; this approach is closer the more the sweep-
back diminishes. A minimum of separation is observed at a sweepback of 65°.

It seems that this distance then tends toward a constant value, at infinity
downstream. The fluctuations in the pressure distribution at the attachment
point are due to a reflection of the expansion waves, emerging from the wall
after the sonic point, on the shock wave, on the stream surfaces (highly rota-
tional flow), and on the sonic line. In other words, these fluctuations are a
consequence of the nonviscous effects due to the blunting of the nose.

In the second version, the various shock waves are represented at a leading
edge which is no longer fixed but set to the corresponding sweepbacks. This

configuration permits observing the invariance of the shock wave of the sphere




and also shows the shift of the incipient influence of a cylindrical leading
edge.

At Mach 7 and 10, the strioscopic visualization gives patterns as shown in
Figs.3 and 4 and yields complementary data by indicating that a specific de-
velopment of the volume flow rate takes place between wall and shock wave. Two
different domains were observed, for the region between shock wave and obstacle.
A low-density region, shown in black, was observed near the attachment point,
developing with increasing angle of sweep. Apparently, this region character-
izes a high-entropy zone, corresponding to the streamlines that have traversed
the shock wave near its crest. The other region, shown in white, corresponds
to the streamlines having traversed the shock wave in its oblique portion.

An attempt was made to define the phenomenon by measuring the Pitot pres-—
sures between the wall and the shock wave, at a Mach number of 7. Two examples
of the obtained results in three abscissas are plotted in Fig.L, relative to
the corresponding strioscopic visualizations. Since the static pressures are
not known, an interpretation of the resultant curves becomes difficult. Near
the point of transfer to the spherical tip, a considerable rise in Pitot pres-
sure, at the interface between the boundary layer and the shock wave, apparently
indicates the passage through a region of intense entropy gradient. Conversely,
far from the tip, a much slower variation seems to indicate an isentropic flow
whose stagnation pressure tends toward the pressure prevailing downstream of
the oblique shock wave of the leading edge.

Apparently, a three-dimensional effect is involved here; the streamlines,
after passing through the shock wave near its crest, first follow the leading
edge and then drift away from this edge, traveling toward the plane faces of the

wing. This effect is greater at less pronounced sweepback.



2¢2.3 Digtribution of the Heat Flux on the Wall

The results relative to the heat transfer, measured along the stagnation
line of the leading edge, are plotted in Figs.h, 5, 6. In all cases, the ex~
perimental data are related to the calculated value at the stagnation point, by
the Fay and Riddell formula.

At Mach 4, a relativély constant heat transfer along the cylinder is /893
obtained, with a value that decreases with increasing angle of sweepback.

This is not the same at Mach 7, as already demonstrated elsewhere (Bibl.3),
and at Mach 10. The heat flux along the wall then undergoes a more irregular
development in the region of transfer from sphere to cylinder. This develop-
ment apparently, like that of the pressure, is directly related to the above-
mentioned reflections, with the heat transfer passing through a minimum at an

abscissa that corresponds distinctly to that of the pressure minimum.

3. Theoretical Study of laminar Heat Transfer in Three-Dimensional Flow

3.1 Principle of Superposition and Form of the General Ecuations

Various authors (Bibl.h, 5) showed that a considerable simplification
could be obtained in the three~dimensional boundary layer problem if the ve-
locity component in the boundary layer, transverse to the exterior streamlines,
could be assumed as low with respect to its longitudinal component. This prin-
ciple of superposition of the longitudinal flow, which apparently is specifi-
cally applicable to wings with strong sweepback, permits treatment of the equa-
tions for longitudinal flow without having to allow for the equations of trans-
verse flow. Using, as longitudinal axis, the projection of the exterior stream-
line onto the surface, and assuming that the transverse component v as well as
its derivatives are low, the following system of local equations will be ob-

8




- tained:

:a—-> equation of longitudinal motion (la)
y

=pr 1op m\]
3 [ ek ¥ L——P-‘ L ,' equation of energy (1b)

e ,r ay '
5;(9“9)*'5;(9'0) = 0, equation of continuity (1e)

where s denotes the measurements along the streamlines, while e represents a
quantity proportional to the distance between two adjacent streamlines.
The total equations, obtained by integrating the local equations of motion

and energy in accordance with the thickness of the boundary layer, will then

read
T Cp - w8, w [H 4+ 2. duse..I: . : .
-.!; = ﬂ‘“a,_z.»y o | ——"= L. S 4 -1-& ,  total equation of momentum (2a)
2° s U Fids 9 ds|’
q dA [ 4 Y .
= — + A= gfg_*_i gfgi.f.gf total equation of energy (2b)
PelaCpTie ds u, ds  p, ds e ds ! .

It becomes immediately obvious that the principle of superposition makes it pos-
sible to give the equations of the three-dimensional boundary layer a form iden-
tical to that of the boundary layer on a body of revolution whose ordinate of
the meridian is assumed to be e(s). If the exterior flow of the perfect fluid
is known, the reduced width e of the stream surface will, in principle, be a
datum of the problem. In that case, any theoretical treatment, established for

a flow of the form of a surface of revolution, can be used for calculating the
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development of the three-dimensional boundary layer.

3.2 Methods of Calculation for the Heat Transfer to the Wall

3.2.1 Determination of the Streamline Divergence

Based on the principle of superposition, it is suggested to make use of
calculation methods that incorporate local equations and the total equation of
energy, with the practical purpose of predicting the heat flux at the wall of
strongly sweptback wings and, specifically, along their leading edge.

For either one of the methods, it is necessary to determine the term (1/e)
(de/ds) representing the divergence of the streamlines.

For an arbitrary surface, considerations of differential geometry permit
demonstrating that e(s) is a solution of the differential equation

(kw2 i 0 (3)
where K denotes the total curvature of the surface, while k; is the geodesic
curvature of tﬁe streamline at the point under study. This latter can be es-
timated if the distribution of the flow quantities at the edge of the boundary

layer is known:

1 9
K, = -——s —. (4)
Pele On
Posing (1/e)de/ds = #(s), we obtain
de _ ak? 2 _
AR (5)

Equation (5) is of the first order in #. The second term, in general, /895
is analytically not known. A stepwise construction of the streamlines, however,

would permit a numerical integration. This will yield
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e(s) = exp Is¢(s)ds
e(s,) s,

where s, is the abscissa of a point for which ¢(s) is arbitrarily fixed. [The

{

function e(s) is determined to within a multiplicative constant. ]

In the case of interest here, the total curvature K is zero along the cy-
lindrical portion. The abscissa s; will be taken as equal to that correspond-
ing to the attachment point with the spherical tip. The stagnation line will
be assumed as the nonsingular streamline (ks = 0).

Then, eq.(5) becomes

a@ . n
'ds+¢ _—a_.z ‘ (6)

Along the spherical sector, the value for e can be taken as e = sin -%—.

The initial value of ¢ at the shoulder will thus be: #(s;) = -&;A—. In
general, the derivative dkp/dn is not known analytically along the line of sepa-
ration. If 3k;/9n is identically zero, the streamlines close to the separation
line may be compared to geodesic lines issuing from the stagnation point. This
case can take place only in the vicinity of A = 90° and has been studied else-
where (Bibl.6).

For an infinite cylinder, the following relations can be established along

the stagnation line:

R (E _ R dv

eds u, dn (7)
%k, [Radv)?
n u, dn ) (8)

These relations are located at.infinity in the case investigated here.

However, at a finite distance, the origin effect, created by the attachment
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point with the spherical tip, must be taken into consideration, specifically in
the presence of a pressure generation. The study proposed elsewhere (Bibl.2),

making use of eq.(7) at a finite distance, is thus only asymptotically valid.

3.2.2 Method of local Similitude /896

As mentioned at the beginning of this Chapter, any theoretical treatment
established for a flow of revolution can be used if the principle of superposi-
tion is assumed and if the function e(s) is known. In this manner, the calcula-
tion of transfer was presented by Valensi (Bibl.6) for the case in which the
streamlines, at the edge of the boundary layer projected onto the surface, co-
incide with the geodesic lines issuing from the impact point. The calculation
was performed by extension of the Stine and Wanlass method (Bibl.7), applicable
to axisymmetric flows. The method is here extended to the case where e(s) is
defined by eq.(6).

The calculation suggested by Stine and Wanlass makes successive use of the
Mangler and Stewartson transformations and reduces the problem to that of an
incompressible two~dimensional flow. It then becomes possible to use the simi-
lar solutions of the laminar boundary layer, based on the Falkner-Skan model.
The fundamental parameter, permitting a local correspondence, is m = (s/u.)
du./ds, which becomes m and ; in each of the associated two~dimensional flows.

Thus, it is assumed that, at each point, an incompressible two-dimensional
flow can be made to correspond to the real flow, with the velocity being dis-
tributed in accordance with a law in powers of the abscissa, having an exponent
of ;.

Thus, for the local coefficient of the flux density of the convective heat

transfer to the wall, we have
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where (46/dn) _ is the temperature gradient at the wall for the corresponding

m
incompressible two-dimensional flow.

8
- = _ - J‘ e’ds
The parameters m/m and m/m are given by ~— = =
m e’s
5y-3 =} _ 3v-1

. -1 2714 -1 2(y-1)
= —(1+7—2—M:) - <1+’y2 M§> ds .
)

The reduced temperature gradient (d6/dm),_,: is tabulated for various ratios
T,/T; and for temperature distributions at thie wall that can be proportional to
a power of ?.

The heat transfer q can then be calculated, provided that the recovery /897

! factor r is known. This value is taken as equal to pzz, for P, = 0.7.

3.2.3 Method Based on the Total Equation of Energy

Tt has been demonstrated (Bibl.8) that a flexible calculation method, based
on a solution of the total equation of momentum, would permit predicting - with
a reasonable approximation - the principal dynamic characteristics of a laminar
or turbulent boundary layer, in the case of moderate pressure gradients. The
approximate method used here for calculating the heat transfer is an extrapola-
tion of this technique to the total equation of energy.

The basic hypothesis, used for the dynamic problem, is to assume that the
shape of the velocity and temperature profiles in the boundary layer varies
only little, so that the friction coefficient, as a function of the Reynolds

number of the thickness of the momentum, can be expressed by the relation of
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the plane plate. Using the concept of reference temperature, the relation ap-

plicable for the friction coefficient then becomes

0,220 fPad
S o D20 Y stn g = 2H (10)

2 [Peugd,) Pelte
where g is the C;/Cy; of the laminar plane plate at constant Rﬁz’ This value
is obtained from the volume mass p* and from the viscosity w¥, which cor-

respond to the reference temperature T*. For the latter, we suggest the use of

Monaghan's relation

™-T, = 0.54(T) - T,) + 0.16(T, - T,) (11)

where Ty is the temperature of the athermal wall, to which a recovery factor of
r = Pgéis assumed to correspond.

The same treatment will now be applied to the total equation of energy,
considered as a differential equation for the energy thickness A. For inte-
grating this equation, we use the relation expressing the heat flux at the wall
as a function of the Reynolds number of the energy thickness, based on the
properties of the plate.

For a laminar plane plate, at constant wall temperature, a constant ratio

of the heat flux coefficient to the friction coefficient exists:
c
- f.A_ ‘/
s = ch/-é-_Pr“.
From eq.(10), which expresses C; as a function of Rg,, it is easy to derive -
after integration of the total equations of the plane plate - the relation that

expresses the heat flux at the wall as a function of the Reynolds number of the

energy thickness:



q B en AN 898
= wl B = 0.2205¢ (s 1 : 2
PeltepTe (Pl g( T, ) |
He !

a relation that transforms the total equation of energy (2b) into a linear dif-
ferential equation of the first order for A°.
In the general case, the integration is made from the point s, where the

energy thickness is known. This yields the energy thickness of
(Bpue)? = (A 2 +fs ' e
uee) " = ,oeuee)s.O . 2BOuu e’ds , - (13)
0

The heat flux at the wall can be obtained from this, by using eq.(12).

In the problems of interest here, the starting point of the integration
will be the stagnation point of the body front. The ratio of the heat flux at
the moving point to that at the stagnation point can be conveniently expressed

by the formula

B petty
By oy

u_e

« /2

S
du B
(;—3> 2 P u e? ds
ds 7y | By Py ©

3.3 Application to the leading Fdge and Comparison with Experiment

Two domains must be differentiated in application of the calculation to the
cases in question.
| A first region is formed by the spherical sector, forming the tip for
which the flow and the heat transfer are thoée of a forward body of revolution.
The reduced width of the stream surface is here simply proportional to the dis-
tance of the wall from the axis that carries the stagnation point and the center

of the sphere.
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A second region, which has its origin at the attachment point with the cyl-
inder is the leading edge itself. Here, the problem is that of a three~dimen-
sional flow containing pressure gradients determined by experiment. In view of
the observations made previously on the origin effect, no other possibility
exists at present than to use, in the calculation, a stagnation pressure at the
edge of the boundary layer equal to the stagnation pressure p; downstream of
the straight shock shed from the nose. In all these cases, the experimental
pressure curves will be used for calculating the heat flux.

Data obtained by Michel (Bibl.2) were used for obtaining the divergence of
the streamlines, where an approximate relation expresses this divergence as a
function of the normal velocity gradient and assumes a Newtonian transverse

pressure distribution:
Rée | Rav _IH-&-:)]‘“.
eds u, dn Me | Pe '

The geometricai study given in Section 3.2.1 demonstrates that this re- /899
lation is only rigorous in the case of a purely cylindrical flow, i.e., at a
great distance from the nose.

In the region of varying pressure close to the attachment point, a deter-

mination of the streamline divergence must include an integration of eq.(6).

This integration is made by using the following approximate value for dk,/dn:

3k2 R dv\ ?
=  \w @

which is rigorously valid for a purely cylindrical flow.

On the other hand, dv/dn was calculated by assuming a Newtonian transverse

distribution, from the pressure measured along the stagnation line.
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The initial value, taken at the shoulder and imposed by the preceding flow

of revolution, as demonstrated in Section 3.2.1,can be expressed by

R de
[—-——] = cot A.

e ds s:S1

At Mach 4, the constancy of the pressure and of the heat transfer, over
most of the length of the leading edge, have resulted in applying only an asymp-
totic form of the integral method, a form referring to a cylindrical flow of
uniform pressure with a stagnation pressure of p;. The broken curves, plotted
to thé right of the experimental curves in Fig.5, agree satisfactorily with the
measured valuese.

At Mach 7, the calculations included an application of local and general
methods in the pressure gradient of the leading edge. The corresponding curves,
plotted in Fig.5, demonstrate that each of these two methods satisfactorily re-
produces the experimentally observed development, in that the flux, in the re-
gion influenced by the attachment point, passes through a minimum. However, it
should be noted that the similitude method enters the exterior velocity gradient
as well as the divergence of the streamlines in a direct and local manner. The
application of this method becomes difficult for wings of medium sweepback, in
the region influenced by the attachment point, because of the inaccuracy in the
Mach number distribution, determined from the pressure at the wall.

Figure 6 shows the results obtained with the integral method at a Mach
number of 10. This method still stipulates a minimum heat flux, corresponding
largely to that of the pressure. A more rigorous determination of the width of
the stream surface apparently will lead to results that are in better agreement
with experimental data than those obtained elsewhere (Bibl.2).

At strong sweepback, experiment and calculation agree over the entire

17



length of the model. At sweep angles of 50° and 60°, experiments are first in
satisfactory agreement with the calculation but then yield a heat flux value

that steadily decreases to below the calculated values. In fact, the trend /900
is toward a new asymptotic value, which can be determined by applying the inte-~
gral method to a uniform cylindrical flow whose stagnation pressure would have

a value of P1, relative to the downstream section of an oblique shock parallel

to the leading edge. This result can be compared to the observations made on

the influence of entropy gradients produced by the curvature of the shock wave.
L. Conclusions

An experimental and theoretical study, at Mach numbers of L, 7, and 10 on
the flow and heat transfer along the leading edge of hypersonic wings at various
angles of sweepback led to the following conclusions:

An appreciable increase in Mach number and pressure occurs at high velocity
along the leading edge of a real wing, within a region influenced by the at~
tachment point between the forward body and the actual leading edge. This in-
crease invﬁlves noticeable variations of the heat transfer to the wall.

For predicting the heat transfer to the wall, it is necessary to allow for
the influence of the pressure gradients in the development of the three-dimen~
sional boundary layer. An application of the principle of superposition per-
mits establishing calculation methods that, at strong sweepback, will yield re-
sults in satisfactory agreement with experiments.

Tests made at high Mach number and medium sweep indicate an influence of
the entropy gradients, due to the curvature of the shock wave, which must lead

to a variation in the stagnation pressure at the edge of the boundary layer.
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Fig.3 Shock Waves at M_ = 9.85 (Model B)
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Fig.lh Shock Waves and Pitot Pressures (Model 4, M,
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